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Abstract. We make a case study of how a standard class of Hamiltonians for the fractional 
q‘iantum Hall effect (modelled in a spherical geometry) can be explicitly symmetry reduced 
with respect to the full rotation group, and perform finite-size calculations for small particle 
numbers 

1. Introduction 

The discovery of the fractional quantum Hall effect (FQHE) [ l]  has revealed a new 
interesting many body effect. At high magnetic field (I3 = 5-30 T) and low temperatures 
( T < 1 K), a two-dimensional system of electrons may exhibit plateaux in the transversal 
conductivity uxy, accompanied by deep minima in the longitudinal conductivity cryx. 
The plateaux are quantised to conductivities uy, = yez/  h, with v a rational number, 
and occur for fillings of the Landau levels around the corresponding fractions v. Thus 
far one has observed plateaux, or precursive behaviour for development of plateaux, 
at fractions v = 113, 213 [l], 413, 513 [2], 713, 813 [3], 115 [4], 215, 315, 415 [2], 715, 
815 [51, 117 [61,2/7 [21,3/7,4/7 P I ,  917, 10/7, 1117 [51, 1917 [81, 219 [9l, 419, 519 
[7], 1319 [5], 2/11, 3/11 [9], 5/11, 6/11, 6/13, 7/13, and 512 [8]. The effect is only 
observed in very pure and high mobility samples ( p  ~ 0 . 1 - 7  x lo6 cm2 V-’ s-I), most 
commonly with the two-dimensional electron system being realised in an AI, -,Ga,As- 
GaAs heterojunction, but also in Si-MosFETs [lo]. Also, systems with hole carriers 
have been observed [2]. 

The constancy of uX.,, with the change of filling factor suggests an extraordinary 
stability of the ground state at the particular fractional fillings. Laughlin [ l l ]  has 
interpreted the ground state at filling factor v = 1/ m, m = 3,5, . . . , as an incompressible 
liquid of highly correlated spin-polarised electrons in the lowest Landau level, with 
the elementary excitations of the system being fractionally charged quasiparticles (with 
charge e* = f v e ) ,  separated from the ground state by energy gaps A,. This implies 
that at these fillings there are cusps in the energy per particle, E (  U )  = E (  N, B ) /  N, as 
functions of the filling factor, 

which in turn explains the stability of the ground state. Moreover, the very precise 
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quantisation of hu, , , / e2  to the rational values v (observed accurate to 3 parts in lo5 
for the 1/3 and 2/3 fillings) is explained as a consequence of the fractional charge of 
the quasiparticles. The plateaux observed at the more complicated fractions is 
explained as a hierarchy where the quasiparticles of one generation condense into new 
incompressible states similar to the primary Laughlin states, and in turn create a new 
generation of quasiparticles [12]. To date all observed fractions except the one at 
v = 5/2 (which is believed to be a spin-unpolarised state [13]) are in agreement with 
the hierarchy picture, although there is now good evidence that some states with 
1 < v < 2 may undergo phase transitions from fully spin-polarised to spin-unpolarised 
states [ 141. Also, the fractional charge of the quasiparticle excitations may have been 
observed [15] to be in agreement with the hierarchy picture. 

From a theorist’s point of view the FQHE represents a beautiful problem. At the 
outset the model is essentially two dimensional, since the motion transverse to the 
electron layer is quantised with an energy gap AE = 20-50 meV-250-600 K, and thus 
essentially frozen out at the temperatures T s  1 K which are actual for observing the 
effect. Also, at the relevant magnetic fields the gap between two successive Landau 
levels, hw, = 10-50 meV- 120-600 K, is sufficiently large that only the states in the 
lowest unfilled Landau level are important. Finally, only the fully spin-polarised states 
in this Landau level are believed to be essential for a qualitative explanation of the 
effect. Quantitatively this approximation is considerably more doubtful, however, since 
the spin-reversed states are separated by a gap A.,= 0.2-1 meV-2-10 K which may be 
comparable to the intralevel Coulomb interaction energies Ac S 4 K. In any case, by 
projecting the model onto the lowest unfilled Landau level the model becomes essen- 
tially one dimensional (although non-homogeneous, and with a non-local interaction) 
and dependent on only one relevant parameter, the filling factor v. This makes the 
model sufficiently simple that it may serve as a standard reference point, and inspires 
a thorough analysis of it. 

Despite the simplicity of formulation, and of parameter space, the model has an 
extremely rich and interesting structure, exemplified by the exotic concepts as topologi- 
cal quantisation [ 161, charge fractionalisation [ 111 and fractional statistics [ 171 which 
have been associated with it. 

At the same time, finite-particle versions of the model can be viewed simply as a 
plain numerical problem of diagonaiising finite-dimensional matrices. It can be used 
as a theoretical laboratory where approximation methods and numerical calculation 
techniques can be tested. The approach taken to the problem in this paper is mainly 
from the latter point of view. 

The ground-state properties, such as the ground-state energy per particle, of the 
electron gas can be studied by calculations of a small number of particles. Also the 
full excitation spectrum can be found. Finite-size calculations with a small number 
of electrons have been performed (for further references see the book edited by Prange 
and Girvin [18] and by Chakraborty and Pietilainen [19]). This is most easily done 
by mapping the problem onto the surface of a sphere [20, 211, with the perpendicular 
magnetic field created by a huge magnetic monopole at the centre of the sphere. The 
advantage of this construction is that one need not choose any boundary conditions, 
as one has to when the electrons are confined to a 2~ Euclidean plane. Also, the 
commonly used periodic boundary conditions are less convenient when a magnetic 
field is present, basicly due to the more complex topology of a torus compared with 
the surface of a sphere, and the fact that translations in the x and y directions no 
longer commute with each other. 
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The limitations of finite-size calculations are essentially set by the dimension of 
the Hamiltonian matrix one has to diagonalise. For N particles at filling factor v the 
full dimension of the Hilbert space is (“i”). However, by straightforward use of the 
fact that J,  is a good quantum number, the Hamiltonian decomposes into (configuration 
interaction) matrices whose dimension behaves like [ 221 

C ( N, v, J, = 0) L- [ & v/ 7~ ( 1 - v )  N2] exp{ - ( N /  v )  [ v In v + ( 1 - v 1 In( 1 - v )]> 

for large N. This dimension increases very rapidly with the particle number, limiting 
N to about 10-12. However, since J is also a good quantum number, one may try to 
utilise this fact to further reduce the dimension of the eigenvalue problems. For the 
fully rotationally symmetric states this leads to a reduction in the linear dimensions 
of the matrices by a factor which behaves like [22] 

D/  C L- 6v2/[( 1 - v)N3] 

for large N. Here D is the dimension of the J = O  Hamiltonian matrices. But it is 
non-trivial to construct the latter matrices in an effective way. In fact, one might fear 
that the numerical work required to construct the symmetry reduced matrices exceeds 
the savings in diagonalising them. The main purpose of this work is to make a case 
study of this symmetry reduction up to the (rather limited) case of N = 4 particles, 
relying heavily on analytic methods. Our conclusion is that there are definite savings 
in the numerical work required, making it possible to cover a region of parameter 
( N ,  v )  space which would be very difficult to reach, even with the largest supercom- 
puters, when working with the much larger configuration interaction matrices. 

The rest of this paper is organised as follows. In section2 we define the model 
and show that regarding energy, many potentials are irrelevant when the Hamiltonian 
is projected onto the lowest Landau level. This is basically due to the Pauli principle. 
In sections 3 and 4 we consider the two- and three-particle cases for arbitrary potentials. 
In section 5 we show how one can construct the minimal Hamiltonian matrix for four 
particles with J = O  and set the stage for the numerical work. This is discussed in 
section6 along with some comments on our results. In appendix 1 we derive the 
transformation between two equivalent ways of expressing the Hamiltonian in terms 
of two-fermion operators. To evaluate matrix elements the commutator algebra of the 
different two-fermion operators is useful. This we have derived in appendix 2. In 
appendix 3 we explicitly evaluate the matrix elements required to construct the Hamil- 
tonian matrix. 

2. The model 

The model system we want to study consists of N electrons confined to the surface 
of a 2-sphere of radius R. The electrons move in a magnetic field E that is homogeneous 
on the sphere, originating from a magnetic monopole with q = 2 n R 2 B / @ ,  units of 
magnetic charge located at the centre of the sphere. Here a0 = h /  e is the elementary 
flux quantum. In second quantised language the pair interaction operator is 

V = f  d2f ld2f l ’ :p( f l )V(f l , f l ‘ )p( f l ’ ) :  (2.1) I 
where the number density operator is related to the fermion field operators as p ( n )  = 
qt(i2)q(i2). We shall assume that the electrons interact via a rotational invariant 



188 R Sollie and K Olaussen 

potential, in which case it can be expanded in spherical harmonics 

with 6 the spherical angle between R and Cl'. 
When the magnetic field is sufficiently high we may simplify the model by projecting 

the Hamiltonian onto the fully spin-polarised states of the lowest Landau level?. The 
field operators *(a) can then be expanded as 

T (~ I )=  e a m ~ ( - 9 1  q m  ( C l )  (2.3) 

where Y;;"'(Cl) are the monopole harmonics of Wu and Yang [23], and a, is the 
annihilation operator for an electron with angular momentum J,  = Am. Since 

m = - 9  

(2.4) 

(in a gauge patch which is regular on the Northern/Southern hemisphere) this electron 
will as q + 00 be localised to the region where cos 8 = m / q .  

Inserting the expansions (2.2) and (2.3) into equation (2.1) we may carry out the 
angular integrations. The integrals over products of three (monopole) spherical har- 
monics [24] ( YpA Ybi4'YLM) leads to the expression 

where aL is related to the original expansion coefficient uL by 

and the C L M  are spin-L spherical tensors, 

C L M  = 1 (-l)ntq(qqmnlLM)a',a_, 
m, n 

with (: : 1) a Wigner 3-j symbol. Notice that the factor (4z:1)-1(;:?L) in (2.6) has the 
effect of damping out the large-L components of the interaction potential. For large 
q this factor behaves like exp(- L2/q). This will essentially damp out all the components 
with L a  q I i 2 =  R/lB, where 1, = (h/eB)"* is the magnetic length. This damping is 
due to the fact that states in the lowest Landau level can only be localised to a region 
of linear extension lg. Thus, variations in the pair potential on shorter length scales 
will be averaged to zero. 

Due to this damping we may restrict L to the region L<c q as q + a .  Therefore, 
the asymptotic relation [ 2 5 ]  

t As discussed in the introduction, with the field strengths used in experiments this may be a doubtful 
approximation for the spin polarisation. 
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is valid in this limit. Here PLM (x)  = YLM (B,4 = O), with x = cos 0 3 ( M  + 2n) /2q .  
Thus, we may approximate 

as q+m. 

operators, defined as 
The interaction (2.5) can be rewritten in terms of pair creation and annihilation 

These operators are by construction spherical tensors of rank L, as can also be verified 
directly from their commutation rules with the angular momentum operators, 

(2.10) 

Using the symmetry properties of the 3-j symbols, and the anticommutation rule for 
the fermion operators, we find 

which implies that the A , ,  are non-zero only for L such that ( - 1 ) 2 q + L =  -1 (i.e. odd 
L when q is integer and even L when q is half interger). 

To express the interaction operator in terms of A:,,, and A L M  we define 

As shown in appendix 1 we then have the relations 

V L = C  RUWJ WL = RLJVJ 
J 

where the transformation matrix R, is given by 

{ 9 "  9" 3 R L j  = J ( 2 L +  1) (2J+ 1 )  

(2.11) 

(2.12) 

(2.13) 

with the object in curly braces a Wigner 6-j symbol. From the properties of the 6-j 
symbols it follows that RU is a real, symmetric and orthogonal matrix. We thus have 
two alternative ways of representing the interaction (2.5) 

V = C ~ L V L = C P J W J  L (2.14) 

In addition to the electron-electron interaction we shall assume the presence of a 
homogeneous neutralising background, of density N/4.rrR2, where N i s  the number 

with aL = X J  R&J, P L  = X J  RLjaj. 
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of electrons. The electron-background and the background-background interaction 
then gives an additional contribution to the Hamiltonian. This becomes - iuoN2 with 
N =E,, aLa, the number operator. There is also another contribution to the Hamil- 
tonian, coming from the kinetic energy of the electrons. This is equal to i h w , N =  
( h 2 / 2 m * I i ) N  for electrons in the lowest Landau level (with m* the effective mass of 
the electrons), but following similar treatments we shall not include it in our Hamil- 
tonian. Thus, the model Hamiltonian we choose is 

H = V - ’  2uo N *  . (2.15) 

The canonical choice for interaction potential is the ( 3 ~ )  Coulomb interaction V (  r )  = 
e 2 / 4 m r .  Taking r to be the chord distance between two points on the sphere, r =  
2 sin( 6 / 2 ) R ,  this is equivalent to taking uL = e 2 / 4 m l B q ” * .  

Since the operators AIM and ALM are identically zero when 2q-i-L is an even 
integer, the same necessarily holds for the W,. This means that only [ q + i ]  of the 
2q + 1 potential operators VL are linearly independent. Any combination E L  LY L V,, 
where a; = E: RLjPj (with the sum restricted to such J that 2 q  + J is even), is identically 
zero. Thus, there is a large class of irrelevant pair potentials which, as a consequence 
of the Pauli principle, leads to no interaction at all when the model is projected onto 
the lowest Landau level. The most obvious of these is the point interaction, V(n,  C l ’ )  = 
8 ( 0 ,  C l ’ ) .  However, the irrelevant pair potentials behave in general rather pathologi- 
cally. 

3. The two-particle states 

To obtain a physical interpretation of the various quantities involved it is useful first 
to consider the case of two particles. Let 10) denote the zero-particle state, defined 
such that a,lO)=O for all m = -4, -q+ 1,. . . , q. We can apply the operator A;,M to 
create a two-particle state. The commutation rules (2.10) implies that this state has 
total angular momentum J 2  = L(L+ l) ,  and J, = M. The normalised state is 

Since L and M are good quantum numbers, and since this is the only two-particle 
state with these quantum numbers, it must be an eigenstate of the Hamiltonian. 
Furthermore, the energy is independent of M :  

where the matrix element is calculated by use of the commutation rules in appendix 2 .  
As q + m  this expression should be related to the classical energy between two 

particles on the sphere. In this limit a state with angular momentum L must be a 
superposition of configurations with constant spherical angle Q L  between the two 
particles. Here QL must be the angle between two vectors q that are coupled so that 
L = q + q, i.e. 

L ( L +  1 ) - 2 q ( q +  1)  
2 q ( q +  1) 

cos Q L  = (3 .3 )  
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We thus expect the two-particle energy to approach a classical value 

E F’ V(COS Q L )  = 2 vJPJ ( COS 4 L )  (3.4) 

as q, L-,co. Comparing this expression with equations (3.2) and (2.13), we must have 

J 

as q, L+oo (we have assumed that the potential behaves smoothly on the scale I s ,  so 
that we may set e-l’lq 2 1 in the definition of a J ) .  Thus, we should have R L j  = 
[(2L+ 1) (25+ l)]”’PJ(cos S L ) / ( 2 q + 1 )  as q, L + a .  Indeed, this relation follows from 
the asymptotic behaviour of the 6- j  symbols [25], with precisely the definition (3.3) 
for cos aL. The quality of the asymptotic relation (3.4) is tested in figure 1 for the 
Coulomb potential when 2 q +  1 = 100. 

I 

I ‘ ~ ~ , , I ‘ I r I I  

1 .o 1.5 2.0 2.5 3.0 0 0.5 
e 

Figure 1. The effective two-particle potential as a function of the spherical angle 6. The 
full curve is the classical potential. The broken curve is the energy as calculated by (3 .2 ) ,  
and with the angle calculated by (3.3). 

The quantities E?’ = - 2 P J m  are related to the pseudopotential coefficients 
V,,, of Haldane and Rezayi [20] by E?’= V2q-L. 

From the relation P r  = - i m  V(cos Q L )  it follows that V(cos 6,) will oscillate 
wildly if it is an  irrelevant potential (so that every second PL becomes zero). The 
presence of the smoothing factor exp(-J2 /q)  in the definition of aJ requires the 
irrelevant potentials to be even more pathological. 

4. The three-particle Laughlin states 

The spherical analogues of the Laughlin-Jastrow ( LJ) wavefunctions exist for the 
combinations q = im( N - 1) of magnetic charge q and particle number N [20]. Here 
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m is an odd integer. The corresponding filling factor is 

m-'  - N 
v3-- 

2 q + 1  l - ( l - m - ' ) / N  
( 4 . 1 )  

which differs considerably from the limiting value m - '  for small particle numbers. For 
N = 2 these are the L = 0 states which exist whenever q is half integer. For N = 3 such 
states exist whenever 4 is an odd integer, and they are then exact eigenstates of the 
Hamiltonian, because they are the only rotational symmetric three-particle states. 

The spin-zero three-particle states can be constructed as 

where C, 
commutators are useful: 

are normalisation factors. To calculate the energy of this state the following 

where er = 1 - ( - 1 ) 2 q * L .  Utilising these commutation rules, one finds 

(Tv]iPy)) = 6 ( 2 q +  1)C2 

(TFJ) w J l T Y ) ) = - 3 6 ( 2 q +  1 ) c 2 6 J , q  
( 4 . 4 )  

which leads to an energy which is precisely the sum of three equal pair-energies, 

The value of the pair energy corresponds to an angle 6, = cos-'(-f) = 2 ~ / 3  between 
the electrons. This is the appropriate value for the three electrons to be as far apart 
as possible, being evenly placed around a great circle. Such a simple relationship 
cannot be expected to hold for general N, but it can be used as a starting point for 
an estimation of energies for up to N = 32 electrons [ 2 8 ] .  

5. The four-particle spin-zero states 

We may also use the two-particle operators ( 2 . 9 )  as building blocks when constructing 
states with higher (even) particle numbers. In particular the four-particle spin zero 
states can be constructed as 

( 5 . 1 )  

These states are not all linearly independent, because there exist only of order q / 3  
linearly independent four-particle states with zero angular momentum [ 2 2 ] ,  while there 
are q non-zero states IJ). This fact is reflected in the large degeneracy of their scalar 
products (calculated in appendix 3 ) ,  

( 5 . 2 )  ( L I J )  = 2 e,eJJ( 2 L + 1 ) ( 2 5  + 1 ) [  1 + 2( - 1 )  L ~ ]  
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where R is the matrix defined in equation (2 .13) .  Due to the 0 factors it is at this 
point convenient to split RL,j into an odd and an even part (depending upon whether 
the indices L, J are odd or even), 

R++ R+- 
R‘(R-+ R - ) *  

From sum rules for the 6- j  symbols [26]  it 

R 2 = l  RPR = PRP 

where P is the parity matrix (A These 

( 1  - R++)(l+2R++) = 0 

(5 .3)  

follows that 

(5.4) 
relations imply that 

- ( 1 +  R- 

from which it can be read that the operators 

P = f ( l+2R++)  Q = $( 1 .- R++ ) 
respectively 

P=;(1-2R--)  = f( 1 + R--)  

) (1 -2R- - )=0  ( 5 . 5 )  

(5 .6)  

(5.7) 

are projection operators (in the even, respectively odd, parity subspace) onto the 
subspaces corresponding to eigenvalues 1 and -4, respectively -1  and f.  

To construct an orthonormal basis of spin zero states we first (when 2q is odd) 
find an orthonormal set {x:“’} of eigenvalue-1 eigenvectors for R++, or (when 2q is 
even) find an orthonormal set {x:“’} of eigenvalue -1 eigenvectors for R-- .  The states 

then form an orthonormal basis of J 2  = 0 states. The number D of these states are 
[22] D = ( k ,  k -1 ,  k, k, k, k )  when 2q=(6k-3 ,  6k-2 ,  6k-1 ,  6k, 6 k + l ,  6 k + 2 ) .  

To generate the basis vectors x:“’ we may utilise that (when 2q is odd) 

PLJ = 2 x:“’x~’ 

with the matrix indices restricted to be even, L, J = 2q - 1 ,  2q - 3,  . . . . This implies 

is a projection operator onto the subspace orthogonal to x“). Furthermore, the matrix 
elements P s  are non-zero only when L, J = 2q - 3 ,  2q - 5 ,  . . . . Thus, we may define 
,y(Lz)= PZq-3 ,L/dP2q-3 ,2q-3 ,  and construct the next projection operator Py,’ = 
P E  - , y ~ ’ x $ * ’ .  By repetition of this procedure a complete orthonormal basis is construc- 
ted. The last basis vector generated in this way, x ( ~ ) ,  will correspond to the four-particle 
Laughlin state, 

that ,yy)= P2q-I,L/JP2q-1,2q-I is a normalised eigenvector, and that P?]= PLJ - ,yL ( 1 )  x J  ( 1 ’  

(5.9) 

when 2q=6k-3.  

In appendix 3 we find 
We further need to calculate the matrix elements of the interaction operator (2 .5) .  

- m ( L (  WK I J ) = ~ @ L @ J @ K J ( ~ L +  1)(25 + I ) [  1 + 2(-1)KR]LK[ 1 + ~ ( - ~ ) ” R ] K J  

from which it follows that 

- m ( a l  WK I P ) = ~ ~ K X E ’ X ~ ’ .  



194 R Sollie and K Olaussen 

That is 

(5.10) 

where the sum is restricted to such K that 2q + K is odd. 
Explicit calculation of the coefficients P K  and the basis vectors x ' ~ ) ,  and the 

diagonalisation of the D x D Hamiltonian matrix now has to be done numerically. 
This we discuss in the next section. 

6. Numerical results and discussion 

Since we have made use of the exact properties of the matrix RLj when constructing 
the projection operators PLj, FLj, from which the basis vectors and the Hamiltonian 
matrix is constructed, the numerical calculation of this matrix is the most crucial part 
of the computation. As a test of the accuracy of the projection property we have 
computed 

LJ 

and the similar quantities with P + I? Computing the RLj in an essentially straightfor- 
ward way, by evaluating the explicit summation formula for the 6-j symbols, both 
a,(q) and a2(q) grow exponentially with q, approximately like exp(q/3) with a 
prefactor of about lo-''. This limits q to about 85 [29]. 

The algorithm for constructing basis vectors can then be tested by computing 

and the similar quantities with P+ We have found that the size of these quantities 
are essentially proportional to the v( q ) ,  which indicates that our algorithm for con- 
structing basis vectors from P or P is numerically stable. Finally, diagonalisation of 
the Hamiltonian matrix is done by a standard numerical package. Since the dimension 
D of our matrices are quite low ( D  s 28 for q s 85) this step does not seem to pose 
any numerical challenge. 

Further, as an overall check the numerics may be tested against some exactly 
solvable models. 

( a )  vL = SL,o. The corresponding values of cyL and p, are 

This case corresponds to a constant pair-interaction potential. Thus the interaction is 
essentially the square of the particle number operator N. 

(6.4) V=i!N2. . = 1  2 ( N 2 - N ) .  
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( b )  u L =  aL, , .  In this case we have that 

which corresponds to a pair interaction V = cos 9. In appropriate combination with 
the constant potential (6.3) this may be considered as a spherical analogue of the 
harmonic pair interaction. The interaction can be written 

where J is the angular momentum operator, from which the spectrum can be read out 
immediately. 

(c )  u L = 2 L + 1 .  This corresponds to V(Cl,Cl’)aS(Cl-fI‘). Due to the Pauli prin- 
ciple two electrons of the same spin polarisation cannot be in the same position. Thus, 
this interaction belongs to the class of irrelevant potentials, V = 0. 

With the Coulomb interaction we choose to measure energy in units of e2/4rrdB. 
Analytic results are available at q =: (since this corresponds to a filled Landau level, 
v =  l ) ,  

(6.7) 

and at q = $ (since this is related to the two-particle case by particle-hole symmetry?), 
r 

212 2 
~ ( 2 1 3 )  = -- Jj. 

23 1 
(6.8) 

Also, the q = 3 case can be compared (numerically) with the three-particle Laughlin 
state, again by use of particle-hole symmetry. The particle-hole symmetry relation is 

V [ E ( V )  - E ( 1 ) ]  = ( 1  - V)[E(l - v )  - E ( 1 ) ]  (6.9) 

as can be deduced by rewriting the Hamiltonian (2.15) in terms of hole creation and 
annihilation operators. To avoid finite-size corrections it is essential that all energies 
are evaluated at the same value of q, and that the correct definition (4.1) of filling 
factor is used. 

In table 1 we summarise the numerical results for the lowest energy J = 0, N = 2, 
3 and 4 states, as well as their charge-conjugated states, for q s 9 .  It is in perfect 
agreement with the relations imposed by particle-hole symmetry, the exactly calculable 
cases, and with the N = 3, q = 3, 5 and N = 4, q =;, 9 results of Fano et a1 to all 
decimals given in their paper [21]. 

In table 2 we list the energies of the lowest J = 0, N = 4 states, as well as the energy 
gaps to the first excited J = 0, N = 4 states. The q values chosen belong to the set for 
which a spherical analogue of a Laughlin state, exists. In the second and third 
columns we list the linear dimensions of the eigenvalue problems to be solved if one 
makes a full symmetry reduction as in this paper ( D ( q ) ) ,  or works with the configuration 
interaction matrices (C(q)).  As can be seen, the difference is quite formidable, in 

t The energy per panicle is E = - ( 6 q  + 1)/[(89 +2)d<] for the J = 0, N = 2 state. 
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Table 2. Energies per particle E ( q )  of the lowest lying J = 0, N = 4 states, and the gap 
A( q )  to the first excited J = 0 state, for some q values at which the spherical analogues of 
the Laughlin states exist. The dimensions of the matrix eigenvalue problems when making 
a full  symmetry reduction ( D ( q ) ) ,  or only block diagonalising J1 ( C ( q ) )  are also shown. 

10.5 
16.5 
22.5 
28.5 
34.5 
40.5 
46.5 
52.5 
58.5 
64.5 
70.5 
76.5 
82.5 

4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 

241 
956 

2 451 
5 014 
8 933 

14 496 
21 991 
31 706 
43 929 
58 948 
77 051 
98 526 

123 661 

-0.323 084 2580 
-0.260 758 1027 
-0.224 533 6079 
-0.200 143 0331 
-0.182 289 5696 
-0.168 493 7978 
-0.157 420 1196 
-0.148 277 0491 
-0.140 561 832 
-0.133 937 76 
-0.128 169 8 
-0.123 088 
-0.118 56 

0.010 789 2038 
0.006 739 0283 
0.004 540 3806 
0.003 251 9259 
0.002 467 2199 
0.001 952 3249 
0.001 593 8741 
0.001 332 7972 
0.001 135 802 
0.000 982 88 
0.000 861 4 
0.000 763 
0.000 67 

particular when taking into account that the diagonalisation time grows like the third 
power of the matrix dimension. However, the region of parameter space covered is 
not of the highest physical interest, and  the main purpose of the data in table 2 is to 
provide accurate answers to a well defined standard problem, on which other numerical 
algorithms (e.g. the Lanczos method) can be tested. 

In figure 2 we show the strong correlation between the energy for the lowest J = 0 
state, E /  N ,  and the total number D(4,O; q )  of such states. Each time q increases by 
3 a new J = 0 state is introduced, and this appears to become the new ground state 
(cf figure 3). This new state is introduced at  q values of 4, ;, . . . , i.e. at precisely those 
q values where the spherical analogues of the Laughlin states exist. The stability of 
these particular filling factors is further enhanced because the new state temporarily 
disappears when q is increased by f .  Note that there also are cusps in E /  N at q = 3, 
6,. . . . This is the sequence predicted for the first hierarchical levels, q =  
im( N - 1) if( 1 + N / p ) ,  with p = 2 and m an  odd integer (and N = 4). In figure 3 we 
show the energy levels appear to lie on fairly smooth trajectories as q is varied, with 
the cusps that appear being due  to the occurrence of new trajectories. 

In figure 4 we have plotted the energy gap between the lowest and  the first excited 
J = 0 states. Perhaps contrary to expectation this gap is not the largest at the particular 
fractions q =:, y , .  . . . The reason for this can be read from figure 3. As a new state 
is introduced and  becomes the new ground state, the previous lowest energy J = 0 state 
becomes the new first ( J  = 0) excited state. In summary, the main content of this paper 
is as follows. 

(i) We have studied the symmetry reduction of a standard class of FQHE Hamil- 
tonians defined on the 2-sphere, with respect to the full rotation group, and we have 
explicitly considered the simplest non-trivial case. As we have shown the analytic 
work can be carried out quite neatly and  completely in this case. The remaining 
numerical work was easily done on a personal computer. In comparison we think the 
parameter range we have covered by this method would be very difficult and time 
consuming to handle even on the largest supercomputers without the symmetry reduc- 
tion. An additional advantage is that the most time-consuming part of our computation, 
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Figure 2. The correlation between the lowest J = 0 energy per particle, E /  N ,  and the total 
number of J = 0 states, D(4,O; 4). The indicated q values at which a new state first appears 
correspond to the spherical bersion of the Laughlin sequence, q = f m ( N  - I ) ,  with m an 
odd integer. The additional cusps which appear in E /  N at y = 3,6, . . . fit with the sequence 
for the first hierarchical levels, q =im( N - 1 )  * f (  1 + N / p ) ,  with p = 2 and m an odd integer. 

1 

-0.8 / I I I I 1 
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Figure 3. The energies of the lowest and the three highest J = O  states, for four particles 
on the sphere, as function of the filling factor. The energy levels appear to lie on fairly 
smooth trajectories as y is varied. 
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Figure 4. The energy gap between the lowest and the first excited J = 0, N = 4 states. Some 
particular fillings at which a Laughlin state occurs are indicated with arrows. 

which is the numerical calculation of the matrix RU and the basis vectors x:"', only 
has to be done once (for each value of q ) ,  regardless of the type of interaction potential. 

(ii) We have provided accurate answers to a standard case problem, against which 
numerical algorithms not involving symmetry reduction can be tested in a non-trivial 
way. 

(iii) Somewhat to our surprise there is, even at the very low particle number 
considered by us, clear evidence for the existence of particularly stable states when 
the magnetic monopole charge q =;, y,  . . . . 

Appendix 1. The transformation matrix 

We have defined 

(Al .1)  

Inserting CL.M from (2.7) we get 

(Al.2) 

Normal ordering the fermion operators to the form a ~ a ~ , a n a n ,  yields a minus sign. 
Further, inverting the definitions (2.9) by use of the orthogonality relation for the 
Wigner 3- j  symbols [26] 

(A1.3) 
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the products akak. ,  respectively anan,, can be expressed in terms of A:,Jz, respectively 
AJ,,J;, 

aman = - (-I)~ZZTI 

aLa:= C ( - I )~JETI 

L M  -M 

L M  (' m n -M ) A I M .  

This leads to the expression 

V L = J m  c (-1)Jz+J4(2J+ 1 ) ( 2 J ' + l )  A:,J,AJ,,J; 
J.  I;, J ', J ;  

The last sum over the four 3-j  symbols gives the factor [26] 

- ~ J : . J ; ~ J , J ,  9 4 L 
2 J + 1  {q q J}' 

From this it follows that VL = XjRLj W,, with 

and WJ as defined in (2.11). 

Appendix 2. The commutator algebra 

We have defined the two-fermion operators 

(A1.4) 

(141.5) 

(141.6) 

(A2.1) 

The operators ( - l ) 'AL,-M,  A:, and CL&,, M = -L, . . , , L all transform under rota- 
tions as the components of a spin- l  multiplet. Note that A L M  and A:,,, are identically 
zero when (-1)2y+L= 1, due to the symmetry properties of the 3-j  symbols. These 
relations may be inverted to (A1.4), and 

) C L M .  
9 4  L akaa,  = C ( - 1 ) M + n - 4 ~ m  
m - n  - M  L M  

(A2.2) 
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To calculate the commutators we first find directly from (A2.1) 

[ALM, AlNI ( - 1 )  J (2L- t  1 ) ( 2 J +  1 )  
M + N  

mnrs 

next we use the canonical anticommutation relations to obtain 
[ a : a l ,  aman]  = Smsa:an - 6nsa:am + 6,,a:am - 6,,a:an + 6,,6,, - 6,,6,, 

and use the relations (A2.2) to express the a'a in terms of CKR. We are then left with 
sums over products of two or three 3 - j  symbols, of the form 

and 

( - 1 ) M t N + R + n - q  

mnrs 

with the object in curly braces a Wigner 6-j  symbol. Collecting terms, and repeating 
the above procedure for the other commutators as well, we obtain 

(A2.3) 

where eL = [ l  - ( - l ) 2 q + L ] ,  and 

fLJK = J ( 2 L + 1 ) ( 2 J +  1)(2K + 1 )  

The Lie algebra (A2.3) is just a particular way of writing the so(4q + 2 )  algebra of 
the bilinears in  an and a i .  I t  contains many subalgebras. Of particular interest is the 
su(2) quasispin algebra which exists whenever q is half integer. We have made a 
quasispin analysis of the class of models studied in this paper [ 2 7 ] .  

Appendix 3. Four-particle matrix elements 

We have defined the four-particle spin-zero states 
J 

i J ) =  ( - l ) ' v A ~ N A ~ , - N I O )  
N = - J  

(A3.1) 
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where 10) is the zero-particle state. To evaluate the scalar product 

(A3.2) 

we first commute the rightmost annihilation operator A,, to the right, using the 
commutator algebra (A2.3). That is, we write ALMASN = A J N A L M  + [ A L M ,  A ; N ] ,  which 
gives two terms. 

with their commutator, since ALM gives 
zero when operating on IO). Furthermore, this commutator may be replaced by 
i eLeJ8LJ8M,-N,  since the remainder contains a CKR which also gives zero when operating 
on IO). Thus, the first term leads to the expression 

In the first term we may replace 

M + N l  C ( - 1 )  zeLe/SL,SM,-N(OlAL,_MA:NIO)= (2L+ WW%b (A3.3) 
M N  

Now we turn to the second term. This becomes 

(OIAL,-M[ALM, A:NIA:,-NIO) = ~eLe/ iSL,SMN(OIAL,-MAJ,-NIO) 

when inserting the commutator from (A2.3). In the second of these two terms we may 
replace CKRA;,-,N with their commutator, since CKR gives zero when operating on IO). 
This gives a contribution 

where in the last step we have used a standard sum rule for 6- j  symbols [26] and 
e L J  =48,8,(2L+ 1)(2J+ l ) ( - l ) , .  Collecting the three contributions, we get 

(L lJ )=2O,O,J (2L+1) (2J+l )  [1+2(-1)LR],,.  (A3.4) 

Now we turn to the matrix elements 

- J m (  Ll WK 1 J) = (-  1 ) M t h .  (OIA,,+, ALMAXRAKRA;,vA:,- lo) (A3.5) 
M N R  

which we evaluate by the same technique as above. We first commute the operator 
AKR two places to the right, obtaining three terms: 

1 (-V+ veJeK + 8 K J S R h  ( O I A ,  - 2 1 A L M A K R A X - k t ~ ) +  ( N ++ - N )  
M N R  
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The first two of these are similar to the expression in (A3.2), and lead to a contribution 
48,8J8,[(2L+ 1)(25+ 1)1''~[1 +2(-1)KR]LJ8JK. In the last term we may replace 
CHsA;,- by their commutator, obtaining a contribution 

Due to rotation symmetry the matrix element which remains to be evaluated is non-zero 
only when AkRALT can be coupled to an angular momentum zero operator. This 
requires G = K and T = -R, and leads to the same matrix element as in (A3.2), e.g. 

C (- 1 "+ T ( ~ I ~ L , - M ~ L M ~ : R ~ L 7 1 0 )  
MT 

=28L&4(2L+ 1)(2K + 1) [1  +2(-1)KR]LK6KG6R,-T. 

The sum over the remaining factors is independent of this expression, and gives a 

8 ( -1 )~e , e , e , [ (2~+  1)(25+ 1)] ' /~[1 + 2 ( - 1 ) K R ] ~ ~ R ~ ~ .  Collecting all terms we finally 
get 

factor (-1)"28J8,[(25+ 1)/(2K + ~)] ' / 'RKJ.  Thus, the last term becomes -- (LI WK IJ) 

= 48L8,8KJ(2L+ 1 ) (2J  + 1) [ 1 + 2( -1 )"RILK [ 1 + 2( - 1)"RIK,. (A3.6) 
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